Dan Shanks’ CUFFQI Algorithm
Resurrected

Renate Scheidler

rscheidl@ucalgary.ca

UNIVERSITY OF

CALGARY

Celebrating 75 Years of Mathematics of Computation
ICERM (Providence, RI)
November 1, 2018




UNIVERSITY OF

What is CUFFQI? W CALGARY

Short for Cubic Fields From Quadratic Infrastructure

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 2/32



UNIVERSITY OF

What is CUFFQI? W CALGARY

Short for Cubic Fields From Quadratic Infrastructure

o Invented by Dan Shanks (1987)
Editor for Math. Comp. 1959-1996

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 2/32



UNIVERSITY OF

What is CUFFQI? W CALGARY

Short for Cubic Fields From Quadratic Infrastructure

o Invented by Dan Shanks (1987)
Editor for Math. Comp. 1959-1996

@ Made practical and implemented by Gilbert Fung (1990)

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 2/32



UNIVERSITY OF

What is CUFFQI? W CALGARY

Short for Cubic Fields From Quadratic Infrastructure

o Invented by Dan Shanks (1987)
Editor for Math. Comp. 1959-1996

@ Made practical and implemented by Gilbert Fung (1990)

@ Unpublished (to appear as Chapter 4 in Cubic Fields With Geometry
by S. Hambleton & H. C. Williams, Springer Monograph 2018/19)
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UNIVERSITY OF

Cubic Fields §/ CALGARY

A cubic field of discriminant D has a generating polynomials of the form

f(x) = x> =3N(A)Y3x 4 Tr())

@ )\ is an algebraic integer in Q(v/—3D)
o Norm and trace are taken in Q(v/—3D)/Q
o N(\) eZ?

(Berwick 1925)
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UNIVERSITY OF

Cubic Fields §/ CALGARY

A cubic field of discriminant D has a generating polynomials of the form

f(x) = x> =3N(A)Y3x 4 Tr())

@ A is an algebraic integer in Q(v/—3D)
@ Norm and trace are taken in Q(v/—3D)/Q

o N(\) eZ?
(Berwick 1925)
Roots of f(x) (Cardano 1545):
CAY3 L IR (i1=0,1,2)
where ( is a primitive cube root of unity
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Example: D = 44806173 @ CALGARY
Naively (take A to be the fundamental unit of Q(v/—3 - 44806173) ):
f(x) = x> — 3x + 9631353811877867340405658366
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UNIVERSITY OF

Example: D = 44806173 W CALGARY

Naively (take A to be the fundamental unit of Q(v/—3-44806173) ):
f(x) = x3 — 3x + 9631353811877867340405658366

Using CUFFQI (all 13 cubic fields with D = 44806173):
fi(x) = x3 — 61x° 4 697x — 330

H(x) = x> — 279x* 4 441x — 170
fi(x) = x> — 63x> + 423x — 8
fa(x) = x> — 69x° + 435x — 216
fs(x) = x> — 63x° + 603x — 494
fs(x) = x> — 83x* + 297x — 54
f1(x) = x> — 63x* 4 837x — 494
fa(x) = x> — 257x% 4 477x — 216
fo(x) = 3 — 87x° +273x — 36
fio(x) = 3 — 62x° + 546x — 261
fir(x) = 3 — 60x” 4 660x — 97
fia(x) = x*> — 165x° + 273x — 90
fis(x) = x> — 127x% + 185x — 62
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UNIVERSITY OF

Cubic Field Construction W CALGARY

Problem with Berwick construction: polynomial coefficients can be HUGE!

(E.g. Tr(e) ~ & ~ exp(1/|D|) for the fundamental unit € € Q(v/—3D))

CUFFQI to the rescue!
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UNIVERSITY OF

Cubic Field Construction W CALGARY

Problem with Berwick construction: polynomial coefficients can be HUGE!

(E.g. Tr(g) = & ~ exp(4/|D|) for the fundamental unit ¢ € Q(v/—3D))

CUFFQI to the rescue!

Goal: for a a given fundamental discriminant D, produce all the cubic
fields of discriminant D a la Berwick via generating polynomials with small
coefficients
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. UNIVERSITY OF
The Berwick Map W CALGARY

There is a map from the set of unordered triples of conjugate cubic fields
{K, K, K"}  disc(K) =D
to the set of unordered pairs of 3-torsion ideal classes
{ [a], [a] }
in OQ(@) via

XX =3NA)Y3x+ Tr(\) —  {[a], [a]}  where a®> = ())
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UNIVERSITY OF

The Berwick Map W CALGARY

There is a map from the set of unordered triples of conjugate cubic fields

{K, K, K"}  disc(K)=D

to the set of unordered pairs of 3-torsion ideal classes
{[a], [a]}
in OQ(@) via

3= 3NY3x + Tr(\) >  {[a],[@}  where a®=())

For D > 0:

bijection onto non-principal ideal classes
nothing maps to the principal class

For D < 0:
3-to-1 onto non-principal ideal classes
1-to-1 onto to the principal class
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UNIVERSITY OF

Some Counting @ CALGARY

Put
r = 3-rank(CI(Q(v/D))
s = 3-rank(CI(Q(v-3D))
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Some Counting @ CALGARY

Put
r = 3-rank(CI(Q(v/D))
s = 3-rank(CI(Q(v/—3D))

3r—1

Number of cubic fields of discriminant D (Hasse 1929):
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Some Counting @ CALGARY

Put
r = 3-rank(CI(Q(v/D))
s = 3-rank(CI(Q(v/—3D))

3r—1
2

Number of cubic fields of discriminant D (Hasse 1929):

Number of cubic fields produced by the Berwick map:

S
-1
For D > 0: 32

-1, 3t —1
2 2

For D <0: 3-
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UNIVERSITY OF

Some Counting @ CALGARY

Put
r = 3-rank(CI(Q(v/D))
s = 3-rank(CI(Q(v/—3D))

3r—1
2

Number of cubic fields of discriminant D (Hasse 1929):

Number of cubic fields produced by the Berwick map:

S
-1
For D > 0: 32

-1, 3t —1
2 2

For D <0: 3-

Connection between r and s (Scholz 1932):
Ir—s| <1
If r # s, then the imaginary quadratic field has the bigger 3-rank
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More Counting

UNIVERSITY OF

) CALGARY

Case D > 0:
Fe e 3F-1 3 -1
- 2 2
3F-1 3r-1
—s_1 — r
r=s > 3 +3

ICERM Nov. 1, 2018
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More Counting

UNIVERSITY OF

) CALGARY

Case D > 0:
3F-1 3r—1
r=-s: =
2 2
3F -1 3r—1
=s—1: = 3"
r=s 5 5 +
Case D < 0:
1 3r—1
p— = 3r
r=s 5 5 +
s+1_1 3r—1
= 1: =
r=s-+ 5 >
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UNIVERSITY OF

More Counting §/ CALGARY
Case D > 0:
-1 3r-1
= : — @
res 2 2
3FF-1 3r-1
=s— 1L = 3" ®
e 2 "
Case D < 0:
35+1 -1 3r—1
=s: = 3" ®
r=s 2 >
3s+1 -1 3r_1
= 1: = ®
rest 2 2

So what are these extra 3" cubic fields?
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UNIVERSITY OF

More Counting §/ CALGARY
Case D > 0:
-1 3r-1
= : — @
res 2 2
3FF-1 3r-1
=s— 1L = 3" ®
e 2 "
Case D < 0:
35+1 -1 3r—1
=s: = 3" ®
r=s 2 >
3s+1 -1 3r_1
= 1: = ®
rest 2 2

So what are these extra 3" cubic fields?

Answer: they are the complete collection of cubic fields of discriminant
9D if 3| D, 81D if 3+D

In the ® cases there are no fields of these discriminants
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. . . UNIVERSITY OF
Berwick Construction Algorithm @ CALGARY

Input: D and a basis of CI(Q(v/—3D)[3]
(For D < 0, also the regulator R of Q(v/=3D))
Output: generating polynomials of all cubic fields of discriminant D

Algorithm:

For each basis class C of CI(Q(v/—3D)[3], collect generators A of

one ideal in C whose cube has a small generator when D > 0

three ideals in C whose cube has a small generator when D < 0

Collect a small element A (¢ Z) in some principal ideal when D < 0
For each A collected

compute f(x) = x3 — 3N(A\)Y3x + Tr(\)

if disc(f) = D, output f(x)
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UNIVERSITY OF

Reduced ldeals @/ CALGARY

An ideal a in OQ(@) is reduced if no non-zero element o € a satisfies

lal < N(a) and |a&] < N(a)
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UNIVERSITY OF

Reduced ldeals @/ CALGARY

An ideal a in OQ(@) is reduced if no non-zero element o € a satisfies

lal < N(a) and |a&] < N(a)
If ais reduced, then

v D! when D’ > 0

N(a) < {\/yof\/3 when D' < 0

where D' = —D/3 when 3 | D and D’ = —3D when 31 D.
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UNIVERSITY OF

Reduced ldeals @/ CALGARY

An ideal a in OQ(@) is reduced if no non-zero element o € a satisfies

lal < N(a) and |a&] < N(a)
If ais reduced, then \/W when D' <0
N(a) < {\/ﬁ when D/ >0
where D' = —D/3 when 3 | D and D’ = —3D when 31 D.

If a is reduced and a3 = (), then

VO (|D']/3)%/? when D’ < 0
(D')3/? when D' >0

Hence, to get A of small norm, use reduced ideals (exist in every ideal
class)
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UNIVERSITY OF

Generators \ of Small Trace, D' < 0 W CALGARY

Here, the reduced ideal a is unique.
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UNIVERSITY OF

Generators \ of Small Trace, D' < 0 W CALGARY

Here, the reduced ideal a is unique.

A+ BVD
WmeA:—i3——-@¢BeZ)Tmn

4N(\) = A2 — B?D' = A + B2|D/|
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UNIVERSITY OF

Generators \ of Small Trace, D' < 0 W CALGARY

Here, the reduced ideal a is unique.

A+ BVD
WMeA:—iE———QQBEZ)TMn

4N(\) = A2 — B?D' = A + B2|D/|

N(\) < (|D’|/3)3/? implies

/‘)3/4

Tl = 1l < 5 (
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UNIVERSITY OF

Generators \ of Small Trace, D' < 0 W CALGARY

Here, the reduced ideal a is unique.
A+ BvD'
Write A = +T (A, B € 7). Then
4N(\) = A2 — B?D' = A + B2|D/|
N(\) < (|D’|/3)3/? implies

B 1 /D"
Tl = 1Al < 5 (15)

Happily, the reduced ideal also yields a small trace!
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UNIVERSITY OF

Infrastructures, D' > 0 W CALGARY

For any ideal class C, the infrastructure of the C is the collection of all
reduced ideals in C (Shanks 1972)
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UNIVERSITY OF

Infrastructures, D' > 0 W CALGARY

For any ideal class C, the infrastructure of the C is the collection of all
reduced ideals in C (Shanks 1972)

o Infrastructures are finite.

o Can move from one infrastructure ideal a to its neighbour p(a) via
one step in a simple continued fraction expansion

o Infrastructure ideals are discretely spaced on a circle of
circumference R, the regulator of Q(v/'D’)

o For any point P on the circle, there is a unique reduced ideal closest
to P (efficiently computable)
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UNIVERSITY OF

Infrastructures, D’ > 0

p(a)

Infrastructure of C = [t] a is closest to P
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UNIVERSITY OF

Suitable Reduced ldeals, D’ < 0 W CALGARY
AE OQ(W) is small if

L<A< (D)2, N < (D)2
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UNIVERSITY OF

Suitable Reduced ldeals, D’ < 0 W CALGARY
AE OQ(W) is small if

1<A< (D)2, [N < (D)2
The following reduced ideals have cubes with small generators (Shanks):

@ For the principal ideal class, the reduced ideal closest to

R  log(D")
377 g
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UNIVERSITY OF

Suitable Reduced ldeals, D’ < 0 W CALGARY
AE OQ(W) is small if

1<A< (D)2, [N < (D)2
The following reduced ideals have cubes with small generators (Shanks):

@ For the principal ideal class, the reduced ideal closest to

R  log(D')
374

@ For any non-principal ideal class C, the three reduced ideals closest to

R 2R
d, Sid, g
T T

where 0 < d < R/3 and z can be explicitly computed
(z depends on the representative of C)
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UNIVERSITY OF

Suitable Reduced Ideals, @ CALGARY

Q) a T

a;

az

Principal infrastructure Non-principal infrastructures
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UNIVERSITY OF

Finding Small Generators, D' > 0 W CALGARY

Shanks' strategy for finding A (or \):

@ Search the infrastructures of [a] and of [a] simultaneously
to find A or A

@ The two infrastructures are mirror images of each other
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UNIVERSITY OF

Fung’s Work @ CALGARY

In his 1990 PhD dissertation, Fung

o translated CUFFQI from Shanksian into a form suitable for
computation

o implemented CUFFQI in Fortran on an Amdahl 5870 mainframe
computer

o produced a number of examples, including the

301
2

= 364
cubic fields of the 19-digit discriminant

D = —3161659186633662283

in under 3 CPU minutes
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CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)
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UNIVERSITY OF

CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)

Dictionary:

o Q — Fq(t), g a prime power, gcd(q,6) =1
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CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)

Dictionary:

o Q — Fq(t), g a prime power, gcd(q,6) =1
o Z — Fy[x]
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UNIVERSITY OF

CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)
Dictionary:

o Q — Fq(t), g a prime power, gcd(q,6) =1

o Z — Fy[x]

o D — D(t) € Fq[t] square-free
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CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)
Dictionary:

o Q — Fq(t), g a prime power, gcd(q,6) =1

o Z — Fy[x]

o D — D(t) € Fq[t] square-free

o K=Ty(t,x), [K:Fq(t)]=3
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UNIVERSITY OF

CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)
Dictionary:
o Q — Fq(t), g a prime power, gcd(q,6) =1
o Z — Fy[x]
o D — D(t) € Fq[t] square-free
o K=Ty(t,x), [K:Fq(t)]=3
minimal polynomial f(x) = x3 — 3N(\)/3x + Tr(\) € Fy[t, x]
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UNIVERSITY OF

CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)
Dictionary:

o Q — Fq(t), g a prime power, gcd(q,6) =1

o Z — Fy[x]

o D — D(t) € Fq[t] square-free

o K=Ty(t,x), [K:Fq(t)]=3

minimal polynomial f(x) = x3 — 3N(\)/3x + Tr(\) € Fy[t, x]
o R — Fy((x71))

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 18 /32



UNIVERSITY OF

CUFFFQI — Function Fields @ CALGARY

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)
Dictionary:

o Q — Fq(t), g a prime power, gcd(q,6) =1

o Z — Fy[x]

o D — D(t) € Fq[t] square-free

o K=Ty(t,x), [K:Fq(t)]=3

minimal polynomial f(x) = x3 — 3N(\)/3x + Tr(\) € Fy[t, x]
o R — Fy((x71))
o C—Fp((x1)) or Fq((x~1/?))

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 18 /32
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Problems

o Infinite place of Fg(t) is archimedian — can decompose in any way
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Problems @ CALGARY

o Infinite place of Fg(t) is archimedian — can decompose in any way

o f(x) need not have a root in Fg((x71))
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Problems @ CALGARY

o Infinite place of Fg(t) is archimedian — can decompose in any way
o f(x) need not have a root in Fg((x71))

o Fy(t,/—3D) =TFy(t,v/D) if g=1 (mod 3)
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UNIVERSITY OF

Problems @ CALGARY

o Infinite place of Fg(t) is archimedian — can decompose in any way
o f(x) need not have a root in Fg((x71))

o Fy(t,/—3D) =TFy(t,v/D) if g=1 (mod 3)

o Extra fields? Fy(t, VD) = Fy(t,v/9D) = Fy(t,/81D)
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UNIVERSITY OF

Problems @ CALGARY

o Infinite place of Fg(t) is archimedian — can decompose in any way
o f(x) need not have a root in Fg((x71))

o Fy(t,/—3D) =TFy(t,v/D) if g=1 (mod 3)

o Extra fields? Fy(t, VD) = Fy(t,v/9D) = Fy(t,/81D)

@ Hasse count is wrong
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UNIVERSITY OF

Problems @ CALGARY

o Infinite place of Fg(t) is archimedian — can decompose in any way
o f(x) need not have a root in Fg((x71))

o Fy(t,/—3D) =TFy(t,v/D) if g=1 (mod 3)

o Extra fields? Fy(t, VD) = Fy(t,v/9D) = Fy(t,/81D)

@ Hasse count is wrong

@ There are three types of quadratic fields
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UNIVERSITY OF

Quadratic Function Fields W CALGARY

Let D(t) € [Fq[t] be squarefree

Let sgn(D) € I, denote the leading coefficient of D(t).
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UNIVERSITY OF

Quadratic Function Fields W CALGARY

Let D(t) € [Fq[t] be squarefree
Let sgn(D) € I, denote the leading coefficient of D(t).
F,(t,v/D) is

imaginary if deg(D) is odd

infinite place of Fq(t) ramifies
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UNIVERSITY OF

Quadratic Function Fields W CALGARY

Let D(t) € [Fq[t] be squarefree
Let sgn(D) € I, denote the leading coefficient of D(t).
F,(t,v/D) is
imaginary if deg(D) is odd
infinite place of Fq(t) ramifies

real if deg(D) is even and sgn(D) is a square in Fq
infinite place of Fg(t) splits
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UNIVERSITY OF

Quadratic Function Fields W CALGARY

Let D(t) € [Fq[t] be squarefree

Let sgn(D) € I, denote the leading coefficient of D(t).

F,(t,v/D) is
imaginary if deg(D) is odd
infinite place of Fq(t) ramifies
real if deg(D) is even and sgn(D) is a square in Fq
infinite place of Fg(t) splits
unusual if deg(D) is even and sgn(D) is a non-square in F,

infinite place of Fq(t) is inert — no number field analogue!
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UNIVERSITY OF

Decomposition at Infinity in K W CALGARY

Let K be a cubic extension of Fg(t) of square-free discriminant D € [F[t]
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UNIVERSITY OF

Decomposition at Infinity in K W CALGARY

Let K be a cubic extension of Fg(t) of square-free discriminant D € [F[t]

Let oo denote the place at infinity in Fq(t).
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UNIVERSITY OF

Decomposition at Infinity in K W CALGARY

Let K be a cubic extension of Fg(t) of square-free discriminant D € [F[t]
Let oo denote the place at infinity in Fq(t).

deg(D) odd: oo = pg? in K
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UNIVERSITY OF

Decomposition at Infinity in K W CALGARY

Let K be a cubic extension of Fg(t) of square-free discriminant D € [F[t]
Let oo denote the place at infinity in Fq(t).
deg(D) odd: oo = pg? in K

deg(D) even:
g=1 (mod 3):
sgn(D) = O: oo = pqr or p> or p in K
sgn(D) #0: co =pqin K
g=—1 (mod 3):
sgn(D) =0: co =pqrorpin K
sgn(D) # O: 0o = pq or p3 in K

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 21/32



UNIVERSITY OF

Decomposition at Infinity in K W CALGARY

Let K be a cubic extension of Fg(t) of square-free discriminant D € [F[t]
Let oo denote the place at infinity in Fq(t).
deg(D) odd: oo = pg? in K

deg(D) even:
g=1 (mod 3):
sgn(D) = O: oo = pqr or p> or p in K
sgn(D) #0: co =pqin K
g=—1 (mod 3):
sgn(D) =0: co =pqrorpin K
sgn(D) # O: 0o = pq or p3 in K

Hasse count does not include the red cases.
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UNIVERSITY OF

The Berwick Map W CALGARY

As before, triples of conjugate cubic function fields are mapped onto pairs
of 3-torsion ideal classes in IF,[t,/D].
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. UNIVERSITY OF
The Berwick Map W CALGARY

As before, triples of conjugate cubic function fields are mapped onto pairs
of 3-torsion ideal classes in IF,[t,/D].

For IF(t,+/—3D) imaginary or unusual:

bijection onto non-principal ideal classes
nothing maps to the principal class

For Fy(t,+/—3D) real:

3-to-1 onto non-principal ideal classes
1-to-1 onto to the principal class
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UNIVERSITY OF

Some Counting @ CALGARY
Put

r = 3-rank(CI(Q(v/D))

s = 3-rank(CI(Q(v/—3D))
Same field unless deg(D) even and g = —1 (mod 3)

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 23/32



UNIVERSITY OF

Some Counting @ CALGARY
Put

r = 3-rank(CI(Q(v/D))

s = 3-rank(CI(Q(v/—3D))
Same field unless deg(D) even and g = —1 (mod 3)

Number of cubic fields of discriminant D with at least two infinite places:
3r—1
2
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Some Counting @ CALGARY
Put

r = 3-rank(CI(Q(v/D))

s = 3-rank(CI(Q(v/—3D))
Same field unless deg(D) even and g = —1 (mod 3)

Number of cubic fields of discriminant D with at least two infinite places:
3r—1
2

Number of cubic fields produced by the Berwick map:

S
-1
For IFy(t,+/—3D) imaginary or unusual: 3

3s+1 -1
For Fy(t,+/—3D) real: —
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UNIVERSITY OF

Some Counting @ CALGARY
Put

r = 3-rank(CI(Q(v/D))

s = 3-rank(CI(Q(v-3D))

Same field unless deg(D) even and g = —1 (mod 3)

Number of cubic fields of discriminant D with at least two infinite places:
3r—1
2

Number of cubic fields produced by the Berwick map:

s
-1
For IFy(t,+/—3D) imaginary or unusual: 3

35+l _1q
For Fy(t,+/—3D) real: —5

Connection between r and s (Lee 2007):
Ir—s| <1
If r # s, then the unusual quadratic field has the bigger 3-rank
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More Counting W CALGARY
If Fy(t,v/D) = Fy(t,/—3D) (imaginary or real), then r =s ©
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) CALGARY

More Counting
If Fy(t,v/D) = Fy(t,/—3D) (imaginary or real), then r =s ©

Case Fy(t,/—3D) unusual, Fy(t, /D) real:
-1 3 -1

22

3F-1 3r—1
=s—1 = 3" ®
r=s 5 5 +
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UNIVERSITY OF

More Counting W CALGARY
If Fy(t,v/D) = Fy(t,/—3D) (imaginary or real), then r =s ©

Case Fy(t,/—3D) unusual, Fy(t, /D) real:
-1 3 -1

= . g @
r S 5 5

331 3r—1
= —1: = 3!‘ @
== 2 2

Case Fy(t,/—3D) real, Fy(t,v/D) unusual:
3Ftl—1 3 -1

= 3" ®
r S 2 2 —I-
3tl_1 3r—1
= 1: = ®
r=s-+ 5 >
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More Counting W CALGARY
If Fy(t,v/D) = Fy(t,/—3D) (imaginary or real), then r =s ©

Case Fy(t,/—3D) unusual, Fy(t, /D) real:
3¥F-1 3-1
= N = @
r=s 5 5
3F-1 3-1
=s—1 = r ®
r=s > 5 +3

Case Fy(t,/—3D) real, Fy(t,v/D) unusual:
3Ftl—1 3 -1

= 3" ®
r=s 5 5 +
-1 3 -1
= 1: = ®
r=s-+ 5 5

So what are these extra 3" cubic fields?
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More Counting W CALGARY
If Fy(t,v/D) = Fy(t,/—3D) (imaginary or real), then r =s ©

Case Fy(t,/—3D) unusual, Fy(t, /D) real:
3¥F-1 3-1
= N = @
r=s 5 5
3F-1 3-1
=s—1 = r ®
r=s > 5 +3

Case Fy(t,/—3D) real, Fy(t,v/D) unusual:
3Ftl—1 3 -1

= 3" ®
r=s 5 5 +
-1 3 -1
= 1: = ®
r=s-+ 5 5

So what are these extra 3" cubic fields?

Answer: they are the fields with one infinite place that are missing from
the Hasse count. In the ® cases, there are no such fields.
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Reduced ldeals @/ CALGARY

The genus of Fq(t,/—3D) is FEg(g)_lJ
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Reduced ldeals @/ CALGARY

The genus of Fq(t,/—3D) is {deg(g)—lJ

An ideal a in Fq(t,+/—3D) is reduced if deg(N(a)) < g

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 25/32
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Reduced ldeals @ CALGARY

The genus of Fq(t,/—3D) is {deg(g)—lJ

An ideal a in Fq(t,+/—3D) is reduced if deg(N(a)) < g

Equivalent: |N(a)| < /|D| where |-|= gd&()
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Reduced ldeals @/ CALGARY

The genus of Fq(t,/—3D) is {deg(g)—lJ

An ideal a in Fq(t,+/—3D) is reduced if deg(N(a)) < g

Equivalent: |N(a)| < /|D| where |-|= gd&()

Every ideal class of Fy[t,/—3D] contains
@ a unique reduced ideal when Fg(t,/—3D) is imaginary
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Reduced ldeals @/ CALGARY

The genus of Fq(t,/—3D) is {deg(g)—lJ

An ideal a in Fq(t,+/—3D) is reduced if deg(N(a)) < g

Equivalent: |N(a)| < /|D| where |-|= gd&()

Every ideal class of Fy[t,/—3D] contains
@ a unique reduced ideal when Fg(t,/—3D) is imaginary

o either a unique reduced ideal or g + 1 “almost” reduced ideals
(degree g + 1) when Fq(t,/—3D) is unusual (Artin 1924)
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Reduced ldeals @/ CALGARY

The genus of Fq(t,/—3D) is {deg(g)—lJ

An ideal a in Fg(t,v/—3D) is reduced if deg(N(a)) < g

Equivalent: |N(a)| < /|D| where |-|= gd&()

Every ideal class of Fy[t,/—3D] contains
@ a unique reduced ideal when Fg(t,/—3D) is imaginary

o either a unique reduced ideal or g + 1 “almost” reduced ideals
(degree g + 1) when Fg(t,/—3D) is unusual (Artin 1924)
o many reduced ideals when Fq(t,+/—3D) is real.
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UNIVERSITY OF

Reduced ldeals @/ CALGARY

The genus of Fq(t,/—3D) is {deg(g)—lJ

An ideal a in Fg(t,v/—3D) is reduced if deg(N(a)) < g

Equivalent: |N(a)| < /|D| where |-|= gd&()

Every ideal class of Fy[t,/—3D] contains
@ a unique reduced ideal when Fg(t,/—3D) is imaginary

o either a unique reduced ideal or g + 1 “almost” reduced ideals
(degree g + 1) when Fg(t,/—3D) is unusual (Artin 1924)
o many reduced ideals when Fq(t,+/—3D) is real.

(Almost) reduced ideals produce A with small norm: |[N()\)| < |D|3/?
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Generators )\ of Small Trace W CALGARY

Suppose Fq(t,/—3D) is imaginary or unusual
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Generators )\ of Small Trace W CALGARY

Suppose Fq(t,/—3D) is imaginary or unusual
Write A = A+ BV —3D (A, B € Fg[t]). Then

N(\) = A% +3B2D

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 26 /32
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Generators )\ of Small Trace W CALGARY

Suppose Fq(t,/—3D) is imaginary or unusual
Write A = A+ BV —3D (A, B € Fg[t]). Then
N(\) = A% +-3B2D

If deg(D) is odd, or deg(D) is even and sgn(—3D) # O, then there is no
cancellation of leading coefficients on the right hand side.
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Generators )\ of Small Trace W CALGARY

Suppose Fq(t,/—3D) is imaginary or unusual
Write A = A+ BV —3D (A, B € Fg[t]). Then
N(\) = A% +-3B2D

If deg(D) is odd, or deg(D) is even and sgn(—3D) # O, then there is no
cancellation of leading coefficients on the right hand side.

IN(\)| < |D[?/? implies

TN = JA] < INV)IY2 < D]/
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Generators )\ of Small Trace W CALGARY

Suppose Fq(t,/—3D) is imaginary or unusual
Write A = A+ BV —3D (A, B € Fg[t]). Then
N(\) = A% +-3B2D

If deg(D) is odd, or deg(D) is even and sgn(—3D) # O, then there is no
cancellation of leading coefficients on the right hand side.

IN(\)| < |D[?/? implies

Tr(M)| = Al < [N(V)[V2 <|DPP/*
Yields again a small trace.
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Generators )\ of Small Trace (Cont'd) W CALGARY

Suppose Fq(t,/—3D) is real

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 27/32



UNIVERSITY OF

Generators )\ of Small Trace (Cont'd) W CALGARY

Suppose Fq(t,/—3D) is real

o Same infrastructure framework (Stein 1992)

o Can also use arithmetic in the divisor class group of Fg(t,/—3D) via
balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 27/32



UNIVERSITY OF

Generators )\ of Small Trace (Cont'd) W CALGARY

Suppose Fq(t,/—3D) is real

o Same infrastructure framework (Stein 1992)

o Can also use arithmetic in the divisor class group of Fg(t,/—3D) via
balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

A small: deg(Tr(\)) < 3g + 1, deg(N())) < 3g
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Generators )\ of Small Trace (Cont'd) W CALGARY

Suppose Fq(t,/—3D) is real

o Same infrastructure framework (Stein 1992)

o Can also use arithmetic in the divisor class group of Fg(t,/—3D) via
balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

A small: deg(Tr(\)) < 3g + 1, deg(N())) < 3g

@ Principal class: take reduced ideal closest to [R/3 + g/2]

@ Non-principal classes: take ideals closest to d, R/3 + d, 2R/3 + d
where —g/2 < d < R/3 — g/2 and d can be explicitly computed
using integer arithmetic only!
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Example — Different 3-Rank @ CALGARY
g=11, D(x) =7x10 + x7 +3x% + 2x5 + 7x* + 8x3 + 4x2 + 2x
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Example — Different 3-Rank @ CALGARY
g=11, D(x) =7x10 + x7 +3x% + 2x5 + 7x* + 8x3 + 4x2 + 2x
r=3, s=2 = (3%-1)/2 =13 fields, all with co = pq in K.
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UNIVERSITY OF

Example — Different 3-Rank

qg=11, D(x)=7x04x"+3x%+2x° + 7x* + 8x3 + 4x2 + 2x
r=3, s=2 = (3%-1)/2 =13 fields, all with co = pq in K.
f(x) = x3 — S(t)x + T(t) with

E3 5(t) \ T(t) \
1 5t + 10t + 4 4 + P+ 5+ 9t% +6t+ 4
2| 10t 493+t +5t+9 10t° + 8t +5t3 + 5t + 5t + 3
3 6t* + 4t + 10t + 4 5t + 485 4 3t + 585 432+t + 7
4| ot* + 43 +6t2+5t+1 O +atd + 8t + 93 + 42+ 7t +5
5| 4t* + 73 +10t2 + 5t +4 | 615 +6t° + 4t* + 4> + 82+ 10t + 4
6 ot + 424+ 8t+9 t*4+3t° +3:5 4+ 6t +3
7 t* + 33 +9t+3 4+ 2t° +2t* + 313 + 612 + 3t + 2
8| t"+82+6t2+3t+1 O+ 9+ 7t + 43+ 6t2+3t+6
9 7t* + 4t + 9% + 6t 9t® + 10t + 10t* + 9t3 + 6¢2
10 | 6t* +42+5t2+9t+4 5t% +10t* +2t3 + 562+ 8t + 7
11 | 3t* +5854+4t2+6t+9 | 8t°+10t° +4t* +4t3 +8:2+ 2t + 3
12 5t* +6t°4+8t+9 2t 41085 + 3t  + 2 + 2 + 10t + 3
13 | 4t* +3t3 + 51> + 10t + 9 8t +5t* +3t3 + 912+t +3
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Example — Same 3-Rank W CALGARY

g=11, D(x)=2x%+x%+5x* +6x>+7
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Example — Same 3-Rank W CALGARY

g=11, D(x)=2x%+x%+5x* +6x>+7

B (32 —1)/2 =4 fields with co = pq in K
r_5_2;‘{ 32 =9 fields with oo = p3 in K
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Example — Same 3-Rank W CALGARY

g=11, D(x)=2x%+x%+5x* +6x>+7

- (32 -1)/2=4 fields with co = pq in K
r_5_2;${ 32=9 fields with co = p* in K

f(x) = x> —S(t)x+ T(t) with

E3 S(t) \ (1) |
1 9t° + 6 t® + 74 + 6¢2

2 T34+ 7t+8 6t0 + 7t +8t* +5t3 + 412+ 4
3 0t3+3t24+8t+1 2t5 +6t° +6t* +t3+5t+5
4 | ot3 42t 48t +4 4t5 46t + 43 +3t2 +t +5
5
6
7
8
9

43 4 4% 4+ 6t + 2 10> + 4t* + 8t3 + 10t
5t24+8t+5 2t5 4+ 6t3 4+ 2t + 10
1063 452 +5t+1 | 85 +6t* +6t34+9t2+t4+6
5t2 43t +5 9t> 4+ 5t3 + 9t + 10
t34+5t2+6t+1 8t +5t4 +6t3+2t2+t+5
10 | 7t3 4412 45t +2 105 + 7¢% + 8t3 + 10t
11 5t2 +1 10t* +2t2 + 1
12 3t +4 10t* + 612+ 6
13 3t2 10t* + 612 +3
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BIG Example — Same 3-Rank W CALGARY

g=125, D=2x"?+3x°+x3+1
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BIG Example — Same 3-Rank W CALGARY

g=125 D=2x2+3x°+x3+1

fels (3° —1)/2 =121 fields with co = pq in K
T 3% =243 fields with oo = p3 in K
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BIG Example — Same 3-Rank W CALGARY

g=125, D=2x24+3x°+x3+1

fels (3° —1)/2 =121 fields with co = pq in K
T 3% =243 fields with oo = p3 in K

364 fields
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Concluding Remarks W CALGARY

o CUFFQI's run time dominated is dominated by 3-torsion and
regulator computation
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/) CALGARY

Concluding Remarks

o CUFFQI's run time dominated is dominated by 3-torsion and
regulator computation

o CUFFQI can be extended to non-fundamental discriminants via basic
cass field theory and Kummer theory

» Number Fields: Cohen, Advanced Topics in Computational
Number Theory, Ch. 5

» Function Fields: Weir, S & Howe, ANTS-X, 2012 (Dihedral
degree p extensions)
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Concluding Remarks W CALGARY

o CUFFQI's run time dominated is dominated by 3-torsion and
regulator computation

o CUFFQI can be extended to non-fundamental discriminants via basic
cass field theory and Kummer theory

» Number Fields: Cohen, Advanced Topics in Computational
Number Theory, Ch. 5

» Function Fields: Weir, S & Howe, ANTS-X, 2012 (Dihedral
degree p extensions)

@ ldeas can be extended to higher degree fields with quadratic resolvent
fields
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