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What is CUFFQI?

Short for Cubic Fields From Quadratic Infrastructure

Invented by Dan Shanks (1987)
Editor for Math. Comp. 1959-1996

Made practical and implemented by Gilbert Fung (1990)

Unpublished (to appear as Chapter 4 in Cubic Fields With Geometry
by S. Hambleton & H. C. Williams, Springer Monograph 2018/19)
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Cubic Fields

A cubic field of discriminant D has a generating polynomials of the form

f (x) = x3 − 3N(λ)1/3x + Tr(λ)

λ is an algebraic integer in Q(
√
−3D)

Norm and trace are taken in Q(
√
−3D)/Q

N(λ) ∈ Z3

(Berwick 1925)

Roots of f (x) (Cardano 1545):

ζ iλ1/3 + ζ−iλ
1/3

(i = 0, 1, 2)

where ζ is a primitive cube root of unity
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Example: D = 44806173

Naively
(
take λ to be the fundamental unit of Q(

√
−3 · 44806173)

)
:

f (x) = x3 − 3x + 9631353811877867340405658366

Using CUFFQI (all 13 cubic fields with D = 44806173):

f1(x) = x3 − 61x2 + 697x − 330

f2(x) = x3 − 279x2 + 441x − 170

f3(x) = x3 − 63x2 + 423x − 8

f4(x) = x3 − 69x2 + 435x − 216

f5(x) = x3 − 63x2 + 603x − 494

f6(x) = x3 − 83x2 + 297x − 54

f7(x) = x3 − 63x2 + 837x − 494

f8(x) = x3 − 257x2 + 477x − 216

f9(x) = x3 − 87x2 + 273x − 36

f10(x) = x3 − 62x2 + 546x − 261

f11(x) = x3 − 60x2 + 660x − 97

f12(x) = x3 − 165x2 + 273x − 90

f13(x) = x3 − 127x2 + 185x − 62
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Cubic Field Construction

Problem with Berwick construction: polynomial coefficients can be HUGE!(
E.g. Tr(ε) ≈ ε ≈ exp(

√
|D|) for the fundamental unit ε ∈ Q(

√
−3D)

)
CUFFQI to the rescue!

Goal: for a a given fundamental discriminant D, produce all the cubic
fields of discriminant D à la Berwick via generating polynomials with small
coefficients
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The Berwick Map
There is a map from the set of unordered triples of conjugate cubic fields

{ K, K′, K′′ } disc(K) = D

to the set of unordered pairs of 3-torsion ideal classes

{ [ a ] , [ a ] }

in OQ(
√
−3D) via

x3 − 3N(λ)1/3x + Tr(λ) 7−→ { [a], [a] } where a3 = (λ)

For D > 0:

bijection onto non-principal ideal classes
nothing maps to the principal class

For D < 0:

3-to-1 onto non-principal ideal classes
1-to-1 onto to the principal class
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Some Counting

Put

r = 3-rank
(
Cl(Q(

√
D)
)

s = 3-rank
(
Cl(Q(

√
−3D)

)

Number of cubic fields of discriminant D (Hasse 1929):
3r − 1

2

Number of cubic fields produced by the Berwick map:

For D > 0:
3s − 1

2

For D < 0: 3 · 3s − 1

2
+ 1 =

3s+1 − 1

2

Connection between r and s (Scholz 1932):

|r − s| ≤ 1

If r 6= s, then the imaginary quadratic field has the bigger 3-rank

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 7 / 32



Some Counting

Put

r = 3-rank
(
Cl(Q(

√
D)
)

s = 3-rank
(
Cl(Q(

√
−3D)

)
Number of cubic fields of discriminant D (Hasse 1929):

3r − 1

2

Number of cubic fields produced by the Berwick map:

For D > 0:
3s − 1

2

For D < 0: 3 · 3s − 1

2
+ 1 =

3s+1 − 1

2

Connection between r and s (Scholz 1932):

|r − s| ≤ 1

If r 6= s, then the imaginary quadratic field has the bigger 3-rank

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 7 / 32



Some Counting

Put

r = 3-rank
(
Cl(Q(

√
D)
)

s = 3-rank
(
Cl(Q(

√
−3D)

)
Number of cubic fields of discriminant D (Hasse 1929):

3r − 1

2

Number of cubic fields produced by the Berwick map:

For D > 0:
3s − 1

2

For D < 0: 3 · 3s − 1

2
+ 1 =

3s+1 − 1

2

Connection between r and s (Scholz 1932):

|r − s| ≤ 1

If r 6= s, then the imaginary quadratic field has the bigger 3-rank

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 7 / 32



Some Counting

Put

r = 3-rank
(
Cl(Q(

√
D)
)

s = 3-rank
(
Cl(Q(

√
−3D)

)
Number of cubic fields of discriminant D (Hasse 1929):

3r − 1

2

Number of cubic fields produced by the Berwick map:

For D > 0:
3s − 1

2

For D < 0: 3 · 3s − 1

2
+ 1 =

3s+1 − 1

2

Connection between r and s (Scholz 1932):

|r − s| ≤ 1

If r 6= s, then the imaginary quadratic field has the bigger 3-rank

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 7 / 32



More Counting

Case D > 0:

r = s:
3s − 1

2
=

3r − 1

2
,

r = s − 1:
3s − 1

2
=

3r − 1

2
+ 3r /

Case D < 0:

r = s:
3s+1 − 1

2
=

3r − 1

2
+ 3r /

r = s + 1:
3s+1 − 1

2
=

3r − 1

2
,

So what are these extra 3r cubic fields?

Answer: they are the complete collection of cubic fields of discriminant

9D if 3 | D , 81D if 3 - D

In the , cases there are no fields of these discriminants
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Berwick Construction Algorithm

Input: D and a basis of Cl(Q(
√
−3D)[3](

For D < 0, also the regulator R of Q(
√
−3D)

)
Output: generating polynomials of all cubic fields of discriminant D

Algorithm:

For each basis class C of Cl(Q(
√
−3D)[3], collect generators λ of

one ideal in C whose cube has a small generator when D > 0

three ideals in C whose cube has a small generator when D < 0

Collect a small element λ (/∈ Z) in some principal ideal when D < 0

For each λ collected

compute f (x) = x3 − 3N(λ)1/3x + Tr(λ)

if disc(f ) = D, output f (x)

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 9 / 32



Reduced Ideals

An ideal a in OQ(
√
−3D) is reduced if no non-zero element α ∈ a satisfies

|α| < N(a) and |α| < N(a)

If a is reduced, then

N(a) <

{√
|D ′|/3 when D ′ < 0√
D ′ when D ′ > 0

where D ′ = −D/3 when 3 | D and D ′ = −3D when 3 - D.

If a is reduced and a3 = (λ), then

N(λ) <

{
(|D ′|/3)3/2 when D ′ < 0

(D ′)3/2 when D ′ > 0

Hence, to get λ of small norm, use reduced ideals (exist in every ideal
class)
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Generators λ of Small Trace, D ′ < 0

Here, the reduced ideal a is unique.

Write λ =
A + B

√
D ′

2
(A,B ∈ Z). Then

4N(λ) = A2 − B2D ′ = A2 + B2|D ′|

N(λ) < (|D ′|/3)3/2 implies

|Tr(λ)| = |A| < 1

2

(
|D ′|

3

)3/4

Happily, the reduced ideal also yields a small trace!
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Infrastructures, D ′ > 0

For any ideal class C, the infrastructure of the C is the collection of all
reduced ideals in C (Shanks 1972)

Infrastructures are finite.

Can move from one infrastructure ideal a to its neighbour ρ(a) via
one step in a simple continued fraction expansion

Infrastructure ideals are discretely spaced on a circle of
circumference R, the regulator of Q(

√
D ′)

For any point P on the circle, there is a unique reduced ideal closest
to P (efficiently computable)
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Infrastructures, D ′ > 0

r ρ(r)
ρ2(r)

ρ3(r)

ρi(r)

ρn-1(r)
r

a

ρ(a)
P

Infrastructure of C = [r] a is closest to P
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Suitable Reduced Ideals, D ′ < 0

λ ∈ OQ(
√
D′) is small if

1 < λ < (D ′)3/2 , |N(λ)| < (D ′)3/2

The following reduced ideals have cubes with small generators (Shanks):

For the principal ideal class, the reduced ideal closest to

R

3
+

log(D ′)

4

For any non-principal ideal class C, the three reduced ideals closest to

d ,
R

3
+ d ,

2R

3
+ d

where 0 < d < R/3 and z can be explicitly computed

(z depends on the representative of C)
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Suitable Reduced Ideals, D ′ < 0

(1)

a0

a3

r

a2

a1

Principal infrastructure Non-principal infrastructures

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 15 / 32



Finding Small Generators, D ′ > 0

Shanks’ strategy for finding λ (or λ):

Search the infrastructures of [a] and of [ a ] simultaneously
to find λ or λ

The two infrastructures are mirror images of each other
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Fung’s Work

In his 1990 PhD dissertation, Fung

translated CUFFQI from Shanksian into a form suitable for
computation

implemented CUFFQI in Fortran on an Amdahl 5870 mainframe
computer

produced a number of examples, including the

36 − 1

2
= 364

cubic fields of the 19-digit discriminant

D = −3161659186633662283

in under 3 CPU minutes
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CUFFFQI — Function Fields

Jacobson, Lee, S. and Williams, Int. J. Number Theory 11 (2015)

Dictionary:

Q→ Fq(t), q a prime power, gcd(q, 6) = 1

Z→ Fq[x ]

D → D(t) ∈ Fq[t] square-free

K = Fq(t, x), [K : Fq(t)] = 3

minimal polynomial f (x) = x3 − 3N(λ)1/3x + Tr(λ) ∈ Fq[t, x ]

R→ Fq((x−1))

C→ Fq2((x−1)) or Fq((x−1/2))
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Problems

Infinite place of Fq(t) is archimedian — can decompose in any way

f (x) need not have a root in Fq((x−1))

Fq(t,
√
−3D) = Fq(t,

√
D) if q ≡ 1 (mod 3)

Extra fields? Fq(t,
√
D) = Fq(t,

√
9D) = Fq(t,

√
81D)

Hasse count is wrong

There are three types of quadratic fields
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Quadratic Function Fields

Let D(t) ∈ Fq[t] be squarefree

Let sgn(D) ∈ F∗q denote the leading coefficient of D(t).

Fq(t,
√
D) is

imaginary if deg(D) is odd

infinite place of Fq(t) ramifies

real if deg(D) is even and sgn(D) is a square in Fq

infinite place of Fq(t) splits

unusual if deg(D) is even and sgn(D) is a non-square in Fq

infinite place of Fq(t) is inert – no number field analogue!
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Decomposition at Infinity in K

Let K be a cubic extension of Fq(t) of square-free discriminant D ∈ Fq[t]

Let ∞ denote the place at infinity in Fq(t).

deg(D) odd: ∞ = pq2 in K

deg(D) even:

q ≡ 1 (mod 3):

sgn(D) = 2: ∞ = pqr or p3 or p in K
sgn(D) 6= 2: ∞ = pq in K

q ≡ −1 (mod 3):

sgn(D) = 2: ∞ = pqr or p in K
sgn(D) 6= 2: ∞ = pq or p3 in K

Hasse count does not include the red cases.
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The Berwick Map

As before, triples of conjugate cubic function fields are mapped onto pairs
of 3-torsion ideal classes in Fq[t,

√
D].

For Fq(t,
√
−3D) imaginary or unusual:

bijection onto non-principal ideal classes
nothing maps to the principal class

For Fq(t,
√
−3D) real:

3-to-1 onto non-principal ideal classes
1-to-1 onto to the principal class
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Some Counting
Put

r = 3-rank
(
Cl(Q(

√
D)
)

s = 3-rank
(
Cl(Q(

√
−3D)

)
Same field unless deg(D) even and q ≡ −1 (mod 3)

Number of cubic fields of discriminant D with at least two infinite places:

3r − 1

2

Number of cubic fields produced by the Berwick map:

For Fq(t,
√
−3D) imaginary or unusual:

3s − 1

2

For Fq(t,
√
−3D) real:

3s+1 − 1

2

Connection between r and s (Lee 2007):

|r − s| ≤ 1
If r 6= s, then the unusual quadratic field has the bigger 3-rank
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More Counting

If Fq(t,
√
D) = Fq(t,

√
−3D) (imaginary or real), then r = s ,

Case Fq(t,
√
−3D) unusual, Fq(t,

√
D) real:

r = s:
3s − 1

2
=

3r − 1

2
,

r = s − 1:
3s − 1

2
=

3r − 1

2
+ 3r /

Case Fq(t,
√
−3D) real, Fq(t,

√
D) unusual:

r = s:
3s+1 − 1

2
=

3r − 1

2
+ 3r /

r = s + 1:
3s+1 − 1

2
=

3r − 1

2
,

So what are these extra 3r cubic fields?

Answer: they are the fields with one infinite place that are missing from
the Hasse count. In the , cases, there are no such fields.
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Reduced Ideals

The genus of Fq(t,
√
−3D) is

⌊
deg(D)− 1

2

⌋

An ideal a in Fq(t,
√
−3D) is reduced if deg(N(a)) ≤ g

Equivalent: |N(a)| <
√
|D| where | · | = qdeg(·)

Every ideal class of Fq[t,
√
−3D] contains

a unique reduced ideal when Fq(t,
√
−3D) is imaginary

either a unique reduced ideal or q + 1 “almost” reduced ideals
(degree g + 1) when Fq(t,

√
−3D) is unusual (Artin 1924)

many reduced ideals when Fq(t,
√
−3D) is real.

(Almost) reduced ideals produce λ with small norm: |N(λ)| ≤ |D|3/2
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a unique reduced ideal when Fq(t,
√
−3D) is imaginary

either a unique reduced ideal or q + 1 “almost” reduced ideals
(degree g + 1) when Fq(t,

√
−3D) is unusual (Artin 1924)

many reduced ideals when Fq(t,
√
−3D) is real.

(Almost) reduced ideals produce λ with small norm: |N(λ)| ≤ |D|3/2
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Generators λ of Small Trace

Suppose Fq(t,
√
−3D) is imaginary or unusual

Write λ = A + B
√
−3D (A,B ∈ Fq[t]). Then

N(λ) = A2 + 3B2D

If deg(D) is odd, or deg(D) is even and sgn(−3D) 6= 2, then there is no
cancellation of leading coefficients on the right hand side.

|N(λ)| ≤ |D|3/2 implies

|Tr(λ)| = |A| ≤ |N(λ)|1/2 ≤ |D|3/4

Yields again a small trace.
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Generators λ of Small Trace (Cont’d)

Suppose Fq(t,
√
−3D) is real

Same infrastructure framework (Stein 1992)

Can also use arithmetic in the divisor class group of Fq(t,
√
−3D) via

balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

λ small: deg(Tr(λ)) ≤ 3g + 1, deg(N(λ)) ≤ 3g

Principal class: take reduced ideal closest to dR/3 + g/2c
Non-principal classes: take ideals closest to d , R/3 + d , 2R/3 + d
where −g/2 ≤ d < R/3− g/2 and d can be explicitly computed
using integer arithmetic only!

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 27 / 32



Generators λ of Small Trace (Cont’d)

Suppose Fq(t,
√
−3D) is real

Same infrastructure framework (Stein 1992)

Can also use arithmetic in the divisor class group of Fq(t,
√
−3D) via

balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

λ small: deg(Tr(λ)) ≤ 3g + 1, deg(N(λ)) ≤ 3g

Principal class: take reduced ideal closest to dR/3 + g/2c
Non-principal classes: take ideals closest to d , R/3 + d , 2R/3 + d
where −g/2 ≤ d < R/3− g/2 and d can be explicitly computed
using integer arithmetic only!

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 27 / 32



Generators λ of Small Trace (Cont’d)

Suppose Fq(t,
√
−3D) is real

Same infrastructure framework (Stein 1992)

Can also use arithmetic in the divisor class group of Fq(t,
√
−3D) via

balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

λ small: deg(Tr(λ)) ≤ 3g + 1, deg(N(λ)) ≤ 3g

Principal class: take reduced ideal closest to dR/3 + g/2c
Non-principal classes: take ideals closest to d , R/3 + d , 2R/3 + d
where −g/2 ≤ d < R/3− g/2 and d can be explicitly computed
using integer arithmetic only!

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 27 / 32



Generators λ of Small Trace (Cont’d)

Suppose Fq(t,
√
−3D) is real

Same infrastructure framework (Stein 1992)

Can also use arithmetic in the divisor class group of Fq(t,
√
−3D) via

balanced divisors (Galbraith, Harrison, Mireles Morales 2008)

λ small: deg(Tr(λ)) ≤ 3g + 1, deg(N(λ)) ≤ 3g

Principal class: take reduced ideal closest to dR/3 + g/2c
Non-principal classes: take ideals closest to d , R/3 + d , 2R/3 + d
where −g/2 ≤ d < R/3− g/2 and d can be explicitly computed
using integer arithmetic only!

Renate Scheidler (Calgary) CUFFQI Resurrected ICERM Nov. 1, 2018 27 / 32



Example — Different 3-Rank

q = 11, D(x) = 7x10 + x7 + 3x6 + 2x5 + 7x4 + 8x3 + 4x2 + 2x

r = 3, s = 2 ⇒ (33 − 1)/2 = 13 fields, all with ∞ = pq in K.

f (x) = x3 − S(t)x + T (t) with

# S(t) T (t)

1 5t3 + 10t + 4 4t6 + t5 + t3 + 9t2 + 6t + 4

2 10t4 + 9t3 + t2 + 5t + 9 10t6 + 8t5 + 5t3 + 5t2 + 5t + 3

3 6t4 + 4t3 + 10t + 4 5t6 + 4t5 + 3t4 + 5t3 + 3t2 + t + 7

4 9t4 + 4t3 + 6t2 + 5t + 1 t6 + 4t5 + 8t4 + 9t3 + 4t2 + 7t + 5

5 4t4 + 7t3 + 10t2 + 5t + 4 6t6 + 6t5 + 4t4 + 4t3 + 8t2 + 10t + 4

6 9t3 + 4t2 + 8t + 9 t6 + 3t5 + 3t3 + 6t + 3

7 t4 + 3t3 + 9t + 3 t6 + 2t5 + 2t4 + 3t3 + 6t2 + 3t + 2

8 t4 + 8t3 + 6t2 + 3t + 1 t6 + 9t5 + 7t4 + 4t3 + 6t2 + 3t + 6

9 7t4 + 4t3 + 9t2 + 6t 9t6 + 10t5 + 10t4 + 9t3 + 6t2

10 6t4 + 4t3 + 5t2 + 9t + 4 5t6 + 10t4 + 2t3 + 5t2 + 8t + 7

11 3t4 + 5t3 + 4t2 + 6t + 9 8t6 + 10t5 + 4t4 + 4t3 + 8t2 + 2t + 3

12 5t4 + 6t2 + 8t + 9 2t6 + 10t5 + 3t4 + t3 + t2 + 10t + 3

13 4t4 + 3t3 + 5t2 + 10t + 9 8t6 + 5t4 + 3t3 + 9t2 + t + 3
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Example — Same 3-Rank

q = 11, D(x) = 2x8 + x6 + 5x4 + 6x2 + 7

r = s = 2⇒
{

(32 − 1)/2 = 4 fields with ∞ = pq in K
32 = 9 fields with ∞ = p3 in K

f (x) = x3 − S(t)x + T (t) with

# S(t) T (t)

1 9t2 + 6 t6 + 7t4 + 6t2

2 7t3 + 7t + 8 6t6 + 7t5 + 8t4 + 5t3 + 4t2 + 4

3 9t3 + 3t2 + 8t + 1 2t6 + 6t5 + 6t4 + t3 + 5t + 5

4 9t3 + 2t2 + 8t + 4 4t6 + 6t5 + 4t3 + 3t2 + t + 5

5 4t3 + 4t2 + 6t + 2 10t5 + 4t4 + 8t3 + 10t

6 5t2 + 8t + 5 2t5 + 6t3 + 2t + 10

7 10t3 + 5t2 + 5t + 1 8t5 + 6t4 + 6t3 + 9t2 + t + 6

8 5t2 + 3t + 5 9t5 + 5t3 + 9t + 10

9 t3 + 5t2 + 6t + 1 8t5 + 5t4 + 6t3 + 2t2 + t + 5

10 7t3 + 4t2 + 5t + 2 10t5 + 7t4 + 8t3 + 10t

11 5t2 + 1 10t4 + 2t2 + 1

12 3t2 + 4 10t4 + 6t2 + 6

13 3t2 10t4 + 6t2 + 3
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BIG Example — Same 3-Rank

q = 125, D = 2x12 + 3x9 + x3 + 1

r = s = 5 ⇒
{

(35 − 1)/2 = 121 fields with ∞ = pq in K
35 = 243 fields with ∞ = p3 in K

 

 

364 fields 
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Concluding Remarks

CUFFQI’s run time dominated is dominated by 3-torsion and
regulator computation

CUFFQI can be extended to non-fundamental discriminants via basic
cass field theory and Kummer theory

I Number Fields: Cohen, Advanced Topics in Computational
Number Theory, Ch. 5

I Function Fields: Weir, S & Howe, ANTS-X, 2012 (Dihedral
degree p extensions)

Ideas can be extended to higher degree fields with quadratic resolvent
fields
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Thank You — Questions?
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